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Abstract: Molecular surface properties such as the electrostatic or the hydrophobicity potential were condensed into 
an autocorrelation descriptor. A vector of these autocorrelation descriptors based on the molecular electrostatic 
potential was successfully applied to modeling the affinities of a set of 31 steroid molecules binding to the corticosteroid 
binding globulin (CBG) receptor by using a combination of a Kohonen and a feedforward neural network. Similarly, 
an autocorrelation vector derived from the hydrophobicity potential was used to model the binding constant of a set 
of 78 polyhalogenated aromatic compounds to the cytosolic Ah receptor. The models found have a high predictive 
ability as established by cross-validation. 

Introduction 

It is generally accepted that receptor and substrate molecules 
recognize each other at their molecular surfaces. Therefore, 
the binding strength of a receptor-drug complex depends on 
the shape of the substrate surface and on the distribution of 
certain properties on this surface. Any method attempting to 
model biological activity should take into account this informa­
tion and try to correlate it to biological activity. In general, 
the problem can be approached in two steps: First, several 
properties such as electrostatic potential, hydrogen bonding 
energy, or hydrophobicity potential are calculated at distinct 
points on the molecular surface or in the space surrounding the 
molecules. Second, these properties are correlated to the activity 
values using statistical methods or neural networks. Two major 
problems arise: 

First, there is a large number of independent variables. For 
a steroid molecule, e.g., one obtains approximately 3500 points 
on the molecular surface when using a point density of 10 points 
per A2. Several approaches to overcome this problem have been 
published which are based on descriptors calculated from shape 
and potential differences12 or similarity measures3 or use special 
statistical techniques such as partial least squares as in the 
CoMFA method.4 

Second, the independent variables are determined by the 
absolute positions of the points in space and therefore strongly 
depend on the orientation of the different molecules. Thus, one 
needs a method for finding the optimum alignment of the 
molecules of a dataset. Approaches for solving this problem 
were published in ref 5—7. 

We propose here a 3D-QSAR descriptor that uses spatial 
autocorrelation coefficients for transforming the independent 

8 Abstract published in Advance ACS Abstracts, July 1, 1995. 
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1988, 110, 5959-5967. 
(5) Kearsley, S. K.; Smith, G. M. Tetrahedron Comput. Methodol. 1990, 
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variables and for overcoming the alignment problem. In the 
second part of the paper, we present some applications of the 
novel descriptors using artificial neural networks for modeling 
biological activity. 

The first application deals with a dataset of 31 steroids that 
bind to the corticosteroid binding globulin (CBG) receptor. This 
dataset has already been investigated by several research groups. 
It formed the basis for the introduction of the widely used 
Comparative Molecular Field Analysis (CoMFA) method.4 In 
addition, molecular similarity calculations were performed for 
these molecules and analyzed by neural networks and statistical 
methods.3 

The second dataset addresses the problem of modeling the 
toxicity of polyhalogenated aromatic compounds that include 
the highly toxic chlorinated and brominated dibenzo-p-dioxins, 
as well as chlorinated dibenzofurans and biphenyls. These 
compounds bind to the cytosolic Ah receptor.8-10 

Methods 

Spatial Autocorrelation. It is often necessary to consider the spatial 
distribution of some quality or phenomenon in an area consisting of 
several distinct regions. One question that arises then is whether the 
presence of that quality in one region makes its presence in a 
neighboring region more or less likely. If there is such an inter­
dependence, the data exhibit spatial autocorrelation." The concept of 
spatial autocorrelation is mainly applied to problems of geography, 
economics, ecology, or meteorology. A chemical example is the 
analysis of the amino acid sequence along a peptide backbone.12 

Statisticians have developed a number of measures for quantifying 
spatial autocorrelation." One example is Moran's coefficient /: 

X^(M ~ P)(Pj ~ P) 
Yl 

2>'-p>2 

(8) Safe, S. Annu. Rev. Pharmacol. Toxicol. 1986, 26, 371-399. 
(9) Safe, S. Crit. Rev. Toxicol. 1990, 21, 51-88. 
(10) Bandiera, S.; Safe, S.; Okey, A. B. Chem.-Biol. Interact. 1982, 39, 

259-277. 
(11) Cliff, A. D.; Ord, J. K. Spatial Autocorrelation; Pion Limited: 

London, 1973. 
(12) Van Heel, M. J. MoI. Biol. 1991, 220, 877-887. 
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Figure 1. Values of Moran's / coefficient (eq 1) as a measure of 
autocorrelation of the colors on a chess board for the drawing rules of 
the rook, the bishop, and the queen. 

Chart 1 

O 
4 

where n is the total number of data points, [S11) is a connection matrix 
with b,, — 1 for neighboring points i.j and otherwise dH — 0, p, is the 
property value of point /. p is the mean property value, and L is the 
total number of connections given by {6,,}. 

Equation 1 is a quantitative measure of the probability that at 
neighboring data points similar property values can be found. The 
meaning of/ is illustrated by a simple example (Figure 1). The black 
and white colors of the fields of a chessboard are coded by —1 and I, 
respectively. In the lower part of Figure 1, different values for / are 
shown as obtained by eq 1 using different neighborhood descriptions 
{dij}. These connection matrices refer to the directly adjacent fields 
that can be reached by a rook, a bishop, or the queen when moving 
only one field. The rook, which can move only horizontally and 
vertically, will always arrive at a field of opposite color to the one it 
started from—when only a move by one field is allowed. Thus, for 
the rook an / of — 1 is obtained, a strictly negative correlation. A bishop 
always moves in a diagonal manner to a field of the same color. For 
the bishop, one gets an / of +1 . a strictly positive correlation. The 
queen may move to black fields as well as to white ones and thus no 
correlation will be observed (/ = 0). 

Applications of Spatial Autocorrelation in Molecular Modeling. 
A number of applications of autocorrelation in molecular modeling and 
QSAR have been published. Moreau and Broto" first applied an 
autocorrelation function to the topology of molecular structures: 

A(d) = Y^PP1 (2) 
U 

A(d) is the autocorrelation coefficient referring to atom pairs i.j which 
are separated by d bonds, p, is an atomic property, e.g. the partial 
charge on atom /. Thus, one obtains a series of coefficients for different 
topological distances d. a so-called autocorrelation vector. In this case, 
the entries of the neighborhood matrix {<3,y} of eq 1 are equal to 1 if 
the topological distance between atoms i and j is equal to d. This is 
illustrated by an example. The molecule shown in Chart 1, 3-meth-
ylbutyric acid ethyl ester, has three pairs of atoms which are separated 
by five bonds: C]-Qy, Q->_—CA, and Q^-C5. Thus, the corresponding 
autocorrelation for the topological distance five computes to 

A(5) = pxpy + p,j>A + P7P5 (3) 

for a given atomic property p. 
The autocorrelation vectors exhibit some useful qualities. First, a 

substantial reduction of data can be achieved by restricting d. Second, 
the autocorrelation coefficients are independent of the original atom 
numbering—they are canonical. Third, the length of the vector is 
independent of the size of the molecule. Finally, the vectors represent 

(13) Moreau. G.: Broto. P. Nouv. J. Chim. 1980. 4. 359-360. 
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d[A] 
Figure 2. Calculation of the spatial autocorrelation vector for the 
electrostatic potential on the surface of a steroid molecule: (a) the 3D 
model, (b) the point representation of the electrostatic potential on the 
van der Waals surface, and (c( the autocorrelation vector. 

the degree of similarity between molecules. The topological autocor­
relation vectors were used as molecular descriptors in QSAR studies.1415 

Broto and Moreau"' extended this concept to 3D molecular models 
by replacing the topological distance d in eq 2 by the interatomic 
distance in 3D space and thus correlating atomic properties on the three-
dimensional molecular skeleton. Two other 3D autocorrelation studies 
appeared more recently, characterizing the results of molecular dynam­
ics simulations17 and correlating values of potential on a CoMFA-Iike 
grid around molecules.18 

Spatial Autocorrelation of Molecular Surface Properties. In the 
present study, a 3D descriptor is introduced that is based on the 
autocorrelation of properties at distinct points on the molecular surface. 
The points are randomly distributed according to a preset point density 
in order to model a continuous surface and to avoid artefacts. The 
distances between surface points are sorted into preset intervals (d\ov/„, 
Supper)- The autocorrelation coefficient A(_d\ov.e„ dupiK,) is obtained by 
summation of the products of property values p at points ij having a 
distance d belonging to the distance interval (d\mx„ duppe,) and by 
weighting the sum by the total number L of distances in the interval: 

Slower- <.pper) = T ^ PPj Slower K dij < <ppcr) <4> 

For a series of distance intervals with different lower and upper bounds 
Slower and Supper, a vector of autocorrelation coefficients is obtained. 
This vector is a compressed expression of the distribution of property 
p on the molecular surface. Figure 2 illustrates the complete sequence 
for the calculation of the autocorrelation vector. Starting from a 3D 

(14) Moreau, G.: Broto. P. Nouv. J. Chim. 1980. 4. 757-764. 
(15) Zakarya. D.: Tiyal. F.: Chastrette, M. /. Phys. Org. Chem. 1993. 6. 

574-582. 
(16) Broto. P.: Moreau, G.: Vandycke. C. Eur. J. Med. Chem. Chim. 

Ther. 1984. 19. 66-70. 
(17) Grassy. G.; Lahana. R. In: Trends in QSAR and Molecular 

Modelling '92. Proceedings of the 9th Symposium on Struc-
ture-Activitx-Relationships: QSAR and Molecular Modelling: Wermuth. C. 
G., Ed.; ESCOM: Leiden. 1993: pp 216-219. 

(18) Clementi. S.; Cruciani. G.: Riganelli. D.; Valigi. R.: Costantino, 
G.; Baroni. M.: Wold. S. Pharm. Pharmacol. Lett. 1993. .?. 5-8. 
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Figure 3. The dependence of the autocorrelation vector of cortico-
sterone on six different parameters of the calculation scheme (eq 4): 
(a) six different spatial orientations; (b) seven different conformations 
of the side chain at position 17; (c) five different point densities; (d) 
four different distance intervals djf, (e) five different sets of atomic 
radii; (f) comparison of the Connolly surface with the van der Waals 
surface. See text for the values of the different parameters and their 
default values. 

Chart 2 

model of a molecule and its partial atomic charges, the electrostatic 
potential or another appropriate property is calculated for points on 
the molecular surface. For the steroid molecule shown in the top of 
Figure 2, about 3500 points are obtained which are characterized by 
their Cartesian coordinates and the value of the electrostatic potential. 
After applying the autocorrelation function, the autocorrelation vector 
is obtained. Considering distances from 1 to 13 A with a step width 
of 1 A, twelve autocorrelation coefficients are calculated and displayed 
at the centers of the distance intervals at 1.5, 2.5, etc. in the lower part 
of Figure 2. This transformation produces a unique fingerprint of each 
molecule under consideration. 

Properties of the Surface Autocorrelation Vector. The auto­
correlation vectors exhibit some interesting properties. First, they are 
unique for a given molecular geometry. Second, they are invariant to 
translation and rotation since only spatial distances instead of Cartesian 
coordinates are used. Third, a substantial reduction of the input 
information can be achieved. A disadvantage of the condensed 
description of the molecular surface by an autocorrelation vector might 
be that the original information cannot be reconstructed. Thus, 
conclusions on the nature of the pharmacophore are not evident. In 
the following, the dependence of the autocorrelation vector on six 
parameters that can be changed in the calculation scheme is presented 
(Figure 3). All calculations refer to corticosterone which is shown in 
Chart 2 with the IUPAC numbering of the steroid skeleton. The 
following default values were used for those parameters remaining 
unchanged: A point density of 10 points/A2 on the surface, a distance 
interval of 1 A, 100% of the van der Waals radii, and the van der 
Waals surface. 

(a) Spatial Orientation of the Molecule. Figure 3a shows the 
autocorrelation vectors obtained for six different spatial orientations. 
There is no significant difference between them. The observed small 
deviations are due to the different locations of the points on the 
molecular surface. Thus, the autocorrelation vector is translationally 
and rotationally invariant as stated above. 

(b) Conformational Flexibility. Figure 3b shows the autocorre­
lation vectors of seven different conformations of the side chain at 
position 17 (see Chart 2 for the numbering). The 0=C2o—Cn-Ci6 
torsional angle was varied from 0° to -180° in steps of —30°. A 
substantial variance in the autocorrelation vectors can be observed. Thus, 
the autocorrelation vector is sensitive to changes in the conformation. 

(c) Point Density on the Molecular Surface. In Figure 3c, the 
autocorrelation vectors for five different point densities (1, 5, 10, 15, 
and 20 points/A2) are compared. Only the vector obtained for a density 
of 1 point/A2 (dotted line) differs significantly from the average 
autocorrelation vector. Thus, for point densities equal to or greater 
than 5 points/A2 the continuous surface can be modeled with good 
accuracy. 

(d) Distance Intervals. Figure 3d shows the vectors obtained for 
four different distance intervals (0.25, 0.5, 1.0, and 2.0 A). Larger 
intervals tend to flatten the vectors. The vector obtained for an interval 
of 2 A (dotted line) differs significantly from the average. Thus, 
intervals equal to or less than 1 A should be used. 

(e) Atomic Radii. Figure 3e shows the autocorrelation vectors 
obtained for five different sets of atomic radii (60, 70, 80, 90, and 
100% of the van der Waals radii). The shapes of the vectors depend 
strongly on this parameter. 

(f) Surface Type. In Figure 3f, the vectors for Connolly's solvent 
accessible surface19 with a solvent radius of 2.0 A and for the van der 
Waals surface are compared. There is no significant difference. Thus, 
the simpler van der Waals surface can be used with good accuracy to 
model the solvent accessible surface. 

On the basis of this comparison the following values of the 
parameters for the calculation of the autocorrelation vectors were chosen 
for further investigations: a point density of 10 points/A2 on the van 
der Waals surface, a distance interval of 1 A, and 100% of the van der 
Waals radii. 

Results and Discussion 

Dataset of 31 Steroids Binding to the Corticosteroid 
Binding Globulin (CBG) Receptor. The first example for 
applying the surface autocorrelation vector is presented using 
a well-known dataset: 31 steroids binding to the corticosteroid 
binding globulin (CBG). This dataset was first compiled by 
Cramer et al.4 for the presentation of the CoMFA method. A 
subset of the data containing the first 21 steroids is distributed 
with the Sybyl program package.20 Richards et al.3 used the 
same data for similarity calculations; it is distributed as an 
example file with the ASP program.21 Comparison of all these 
printed or computer-coded versions of the dataset shows several 
discrepancies in structure coding. Thus, we returned to the 
original literature2223 and carefully recompiled the dataset (Chart 
3). 

Comparison of the original data to those in the publications34 

and to the distributed datasets20,21 indicates a number of errors 
in coding the topology and/or the stereochemistry of the 
molecules in all four secondary sources. In detail, these were 
seven errors in Cramer et al.4 (5, 13, 14, 15, 16, 21, 28), one 
error in the Sybyl dataset20 (2), six errors in Richards et al.3 (5, 
14, 16, 21, 28, 31), and six errors in the ASP dataset21 (2, 5, 

(19) Connolly, M. L. J. Appl. Crystallogr. 1983, 16, 548-558. 
(20) Sybyl, Tripos Associates Inc.: St. Louis, MO. 
(21) Automated Similarity Package, Oxford Molecular Ltd: Oxford, UK. 
(22) Dunn, J. F.; Nisula, B. C; Rodbard, D. J. Crin. Endocrin. Metab. 

1981, 53, 58-68. 
(23) Mickelson, K. E.; Forsthoefel, J.; Westphal, U. Biochemistry 1981, 

20, 6211-6218. 
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Table 1. CBG Binding Affinity Data from Ref 4 

compd 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

CBG 
affinity (p#) 

-6.279 
-5.000 
-5.000 
-5.763 
-5.613 
-7.881 
-7.881 
-6.892 
-5.000 
-7.653 
-7.881 
-5.919 
-5.000 
-5.000 
-5.000 
-5.225 

activity 
class" 

2 
3 
3 
3 
3 
1 
1 
2 
3 
1 
1 
2 
3 
3 
3 
3 

compd 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

CBG 
affinity (p/O 

-5.225 
-5.000 
-7.380 
-7.740 
-6.724 
-7.512 
-7.553 
-6.779 
-7.200 
-6.144 
-6.247 
-7.120 
-6.817 
-7.688 
-5.797 

activity 
class" 

3 
3 
1 
1 
2 
1 
1 
2 
1 
2 
2 
2 
2 
1 
2 

" 1, high; 2, intermediate; 3, low; this classification was obtained 
by dividing the dataset into three classes of comparable site. 

14,16, 21,28), respectively. The correct dataset can be obtained 
upon request from the authors in the form of an MDL 
MOLFILE. 

The corresponding CBG binding affinities from ref 4 are 
shown as —log K values in Table 1. It should be emphasized 
that giving the pK values of the CBG affinity with five digits 
precision indicates an accuracy in the biological data that is 
not supported by experiment. We have intentionally used the 

Figure 4. Visualization of the CBG binding site for binding cortico-

component 1 
Figure 5. Principal components plot of the steroid data set: squares, 
high activity; asterisks, intermediate activity; crosses, low activity. 

data as given in ref 4 to provide a basis for the direct comparison 
of our results with those of other investigators. 

Model Building. 3D models of the structures were obtained 
by using the 3D structure generator Corina.2425 A receptor 
model for the CBG binding site26 as shown in Figure 4 suggests 
a histidine residue above the plane of the D ring. Thus, the 
orientation of the Cn side chain was manually adjusted to an 
O=C2o—Ci7—Ci6 torsional angle of —60° in order to maximize 
the interaction of the C20 carbonyl function with the N-H 
hydrogen donor site of the histidine residue.26 Partial atomic 
charges were calculated by the PEOE method27 and its extension 
to conjugated systems.28 Points were randomly distributed on 
the van der Waals surface and the electrostatic potential at each 
point was calculated by a classical Coulomb approach using a 
unit positive point charge and the partial charges on all atoms 
of the molecule. Autocorrelation vectors were calculated for 
each molecule for distance intervals of 1 A from 1 to 13 A by 
using the electrostatic potential as property on the van der Waals 
surface and a point density of 10 points/A2. 

Classification Using PCA and Kohonen Networks. As a 
first step toward a model for the binding affinities of the 31 
steroids, the suitability of the surface property autocorrelation 
vectors as QSAR descriptors was investigated by a principal 
component analysis (PCA) to search for a relationship between 
autocorrelation vectors and biological activity. PCA projects 
multivariate data sets from a given problem space into a lower 
dimensionality, it thus can be used to produce two-dimensional 
plots. In Figure 5, a plot of the first two principal components 
is shown. Squares, asterisks, and crosses mark compounds with 
high, intermediate, and low activity, respectively. This linear 

(24) Sadowski, J.; Gasteiger, J. Chem. Rev. 1993, 93, 2567-2581. 
(25) Sadowski, J.; Gasteiger, J.; Klebe, G. J. Chem. Inf. Compul. Sci. 

1994,34, 1000-1008. 
(26) Defaye, G.; Basset, M.; Monnier, N.; Chambaz, E. M. Biochim. 

Biophys. Acta 1980, 623, 280-294. 
(27) Gasteiger, J.; Marsili, M. Tetrahedron 1980, 36, 3219-3228. 
(28) Gasteiger, J.; Sailer, H. Angew. Chem. 1985, 97, 699-701; Angew. 

Chem., Int. Ed. Engl. 1985, 24, 687-689. 
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Figure 6. Kohonen map of the steroid data set: squares, high activity; 
asterisks, intermediate activity: crosses, low activity. The Kohonen 
network has a toroidal topology- Thus, the upper and lower neurons, 
as well as those at the left- and right-hand side, are directly connected 
as indicated by the arrows. 

projection cannot sufficiently separate the three activity classes. 
In recent years, neural networks have gained prominence for 

finding nonlinear relationships. A textbook is given in ref 29 
and a review on the application of neural networks in chemistry 
in ref 30. In particular, Kohonen networks31 can be used for 
the projection of multidimensional data into two-dimensional 
plots.29-30 Thus, it had been shown that Kohonen networks can 
be successfully employed for the projection of reactivity data 
from a seven-dimensional space into two dimensions.32 

A Kohonen network was used for the nonlinear mapping of 
the data from the twelve-dimensional space spanned by the 
autocorrelation vectors into two dimensions. Training of a 15 
x 15 network with the dataset of 31 steroids on a Sun Sparc 
10/512 took 71 s. Figure 6 shows the resulting network. 
Squares, asterisks, and crosses again mark compounds with high, 
intermediate, and low activity, respectively. A Kohonen 
network with a toroidal topology was used. Thus, the upper 
neurons are connected to the lower ones, and the neurons at 
the left-hand side are connected to those at the right-hand side, 
as indicated by the arrows in Figure 6. 

It has been shown that the toroidal topology can nicely be 
indicated by replicating a Kohonen map several times and 
putting these maps together like tiles.29-33 Figure 7 shows a 
4-fold replication of Figure 6. Here, the neighborhood relation­
ships become much more clear and a significant separation of 
the data according to the activity classes can be seen as 
highlighted by the three shaded areas. Only one misclassifi-
cation occurs: a point referring to a compound with intermediate 
activity (asterisk) is surrounded by highly active compounds 
(squares). This is compound 31, the only steroid being 
substituted at position 9; in this case with a fluorine atom. 

The good classification of the data by a Kohonen map 
according to their binding affinity demonstrates the suitability 
of the autocorrelation vector based on the molecular electrostatic 
potential for modeling biological activity. In other words, if 
the variables contained in the autocorrelation vector are quite 
successful in separating the steroids into three activity classes, 
an investigation of their usefulness in modeling the real values 

(29) Zupan. J.; Gasteiger. J. Neural Networks for Chemists—An Introduc­
tion: VCH: Weinheim. 1993. 

(30) Gasteiger. J.: Zupan. J. Angew. Chem. 1993. 105, 510-536: Angew. 
Chem., Int. Ed. Engl. 1993. 32. 503-527. 

(31) Kohonen. T. Self-Organization and Associative Memory, 3rd ed.; 
Springer: Berlin. 1989.' 

(32) Simon. V.; Gasteiger. J.: Zupan. J. J. Am. Chem. Soc. 1993. 115. 
9148-9159. 

(33) Gasteiger. J.: Li. X.: Uschold. A. J. MoI. Graphics 1994. 12. 9 0 -
97. 
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Figure 7. The 4-fold replication of the Kohonen map of Figure 6. 
The three different clusters of compounds with high, intermediate, and 
low activity are highlighted by shaded areas. 

autocorrelation 
coefficients 

m 

CBG affinity 

Figure 8. Multilayer neural network topology. 

of biological activity quantitatively (see Table 1) seems 
worthwhile. Comparison of the results of the principal com­
ponent analysis with those of the Kohonen network indicates 
the nonlinear relationship between the autocorrelation vector 
and the biological activity. Thus, it seemed necessary to again 
use a nonlinear method for modeling the biological activity data. 
Such a method is provided by multilayer neural networks trained 
by the backpropagation algorithm.29-34 

Predicting Biological Activity Using a Multilayer Neural 
Network. It should be emphasized that a Kohonen network is 
based upon an unsupervised learning method: the property in 
question, in our case biological activity, is not used in the 
analysis of the data. A multilayer network trained by the 
backpropagation algorithm,34 on the other hand, is based on 
supervised learning: the values of biological activity are used 
in deriving a model for expressing the relationship between the 
independent variables (autocorrelation vector) and the biological 
activity. 

A feedforward multilayer neural network was used to obtain 
a predictive model of the biological activity of the 31 steroid 
molecules based on their autocorrelation vectors. Figure 8 
shows the topology of the network used. It has twelve input 
units, two neurons in the hidden layer, and one output neuron. 
The input units correspond to the autocorrelation vector and 
the output neuron to the biological activity. The multilayer 
neural network was simulated using a standard program 
package.35 

The network was trained with the data of all 31 steroids 
following the "backpropagation with momentum" procedure 
until the error converged. The training on a Sun Sparc 10/512 
required 41 s. The trained network was then used to predict 
the biological activities of the 31 steroid molecules. Figure 9 
shows the ability of the trained network to reproduce the data 
used for training. The experimental pK values are plotted 

(34) Rumelhart. D. E.: Hinton. G. E.; Williams. R. J. In Parallel 
Distributed Processing: Explorations in the Microstructure of Cognition; 
MIT Press: Cambridge. MA. 1986. 

(35) SNNS: Stuttgart Neural Network Simulator: Version 3.0. University 
of Stuttgart. 1993. 
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Figure 9. Plot of the experimental pK values against the pK values 
reproduced by the trained network. 
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Figure 10. Plot of the experimental pK values against the cross-
validated values: (a) entire dataset (molecule 31 marked by a circle); 
(b) dataset of 30 molecules without 31. 

against the predicted values. A rather high correlation (r = 
0.99) with a low standard deviation (a = 0.18) is obtained. 

In order to estimate the predictive power of the model, cross-
validation following the leave-one-out scheme was performed. 
In 31 independent experiments, the data of 30 steroids were 
used to train the network. The trained network was then used 
to predict the biological activity of the 31st molecule. This 
procedure was repeated 31 times, each time leaving out one 
molecule and then predicting its activity from the model obtained 
with the other 30 steroids. Figure 10 shows two plots of the 
experimental pK values against the cross-validated values. 
Figure 10a shows the results of the cross-validation procedure 
for the entire dataset. A significantly lower correlation (r = 
0.82, a = 0.65) with a cross-validated r2 of 0.63 is obtained—a 
rather low predictivity. One outlier with an outstanding 
deviation can be identified: molecule 31 (marked by a circle). 
This is the same molecule which was already misclassified by 
the Kohonen net, the only steroid of the dataset having a 

Chart 4 

Dibenzo-p-dioxin 

S 

Biphenyl 

Table 2. Binding Affinities of Polychlorinated and 
Polybrominated Dibenzo-p-dioxins (for the Numbering See Chart 4) 

substitution positions 

2,3,7,8-Cl4 
1,2,3,7,8-Cl5 

2,3,6,7-Cl4 
2,3,6-Cl3 
1,2,3,4,7,8-Cl6 
1,3,7,8-Cl4 

1,2,4,7,8-Cl5 
1,2,3,4-Cl4 
2,3,7-Cl3 

2,8-Cl2 
1,2,3,4,7-Cl5 
1,2,4-Cl3 
1,2,3,4,6,7,8,9-Cl8 

pEC5o 

8.000 
7.102 
6.796 
6.658 
6.553 
6.102 
5.959 
5.886 
7.149 
5.495 
5.194 
4.886 
5.000 

substitution positions 

1-Cl 
2,3,7,8-Br4 

7,8-Cl2-2,3-Br2 
3,7-Cl2-2,8-Br2 
3,7,8-Cl3-2-Br 
1,3,7,8,9-Br5 

1,3,7,8-Br4 
1,2,4,7,8-Br5 
1,2,3,7,8-Br5 
2,3,7-Br3 
2,7-Br2 
2-Br 

PEC50 

4.000 
8.824 
8.830 
9.350 
7.939 
7.032 
8.699 
7.770 
8.180 
8.932 
7.810 
6.530 

substituent at position 9, in this case a fluorine atom. In two 
other studies on these data, molecule 31 also was found to lead 
to problems.34 

Thus, it can be assumed that this structural type cannot be 
modeled correctly within this dataset. After deleting this 
molecule from the dataset, the cross-validation test was repeated. 
Figure 10b shows the result of the cross-validation for the 
reduced dataset. Now a rather high value for the predictive 
power is obtained (r = 0.92, a = 0.44) with a high cross-
validated J2 of 0.84. For comparison, Cramer et al.4 obtained 
for the first 21 steroid molecules of the same dataset a CoMFA 
model with a cross-validated r2 of 0.66 (applying a random 
leave-n-out scheme). The best PLS model reported by Richards 
et al.3 for the same 21 steroids has a cross-validated r2 of 0.76. 

A Second Example: Modeling the Toxicity of Polyhalo-
genated Aromatic Compounds. In a second example, the 
affinities of 78 polyhalogenated aromatic compounds for binding 
to the cytosolic Ah receptor were studied. The dataset consisted 
of 25 chlorinated and brominated dibenzo-p-dioxins,89 39 
chlorinated dibenzofurans,89 and 14 chlorinated biphenyls.10 The 
Ah affinity is a measure for the toxicity of these compounds. 
Since there is an increasing public interest in avoiding these 
kinds of toxic compounds, it is highly desirable to have a means 
for predicting their activity. Consistent with this, already several 
attempts have been made to model the toxicity of these 
compounds.1836 Chart 4 shows the molecular skeletons of the 
different structural types and the numbering scheme. Tables 
2—4 give the binding affinities of the compounds. 

Since these compounds are highly hydrophobic, the hydro-
phobicity potential was used as molecular surface property. It 
was calculated for all 78 polyhalogenated aromatic compounds 
from atomic increments for log P31 by using a distance-
dependent potential function.38 In analogy to the steroid 
example, 12 autocorrelation coefficients per molecule were 

(36) Waller, C. L.; McKinney, J. D. J. Med. Chem. 1992, 35, 3660-
3666. 

(37) Ghose, A. K.; Crippen, G. M. J. Comp. Chem. 1986, 7, 565-577. 
(38) Heiden, W.; Moeckel, G.; Brickmann, J. J. Comput.-Aided MoI. 

Des. 1993, 7, 503-514. 



Autocorrelation of Molecular Surface Properties 

Table 3. Binding Affinities of Polychlorinated Dibenzofurans (for 
the Numbering see Chart 4) 

1 positions 

2 
3 
4 
2,3 
2,6 
2,8 
1.3.6 
1.3.8 
2,3,4 
2,3,8 
2,6,7 
2,3,4,6 
2,3,4,8 
1.3,6,8 
2,3,7,8 
1,2,4.8 
1,2,4,6,7 
1.2,4,7,9 
1,2.3.4.8 
1.2,3,7.8 

pECjo 

3.553 
4.377 
3.000 
5.326 
3.609 
3.590 
5.357 
4.071 
4.721 
6.000 
6.347 
6.456 
6.699 
6.658 
7.387 
5.000 
7.169 
4.699 
6.921 
7.128 

Cl positions 

1,2.4,7,8 
2,3,4,7,8 
1,2,3,4.7.8 
1,2,3,6,7,8 
1,2,4,6,7,8 
2,3,4,6,7,8 
2,3,6,8 
1,2,3,6 
1.2,3,7 
1,3,4.7.8 
2.3.4.7.9 
1,2,3,7,9 

2,3,4,7 
1,2,3,7 
1,3,4,7,8 
2,3,4,7,9 
1,2,3,7,9 
1,2,4,6,8 

pl-(\„ 

5.886 
7.824 
6.638 
6.569 
5.081 
7.328 
6.658 
6.456 
6.959 
6.699 
6.699 
6.398 
3.0(K) 
7.602 
6.959 
6.699 
6.699 
6.398 
5.509 

Table 4. Binding Affinities of Polychlorinated Biphenyls (for the 
Numbering See Chart 4) 

Cl positions 

3,3',4.4' 
3,4.4',5 
3,3',4,4',5 
2',3,4,4',5 
2.3,3',4,4' 
2,3',4,4',5 
2,3,4,4',5 

pEC.-i,, 

6.149 
4.553 
6.886 
4.854 
5.367 
5.041 
5.387 

Cl positions 

2,3,3'.4,4',5 
2,3',4,4',5,5' 
2,3,3',4,4',5' 
2,2',4,4' 
2,2',4,4',5,5' 
2,3,4,5 
2,3',4,4'.5',6 

pECM) 

5.301 
4.796 
5.149 
3.886 
4.102 
3.854 
4.004 
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Figure 11. The 4-fold replication of the 20 x 20 Kohonen map of the 
polyhalogenated aromatic compounds: squares, high affinity; asterisks, 
medium affinity; crosses, low affinity. The area occupied by one 
replication of the whole dataset is enclosed by a black line. Areas of 
compounds with high and low affinity are shaded. 

calculated by eq 4 and then used to train a 20 x 20 Kohonen 
network. Figure 11 shows the 4-fold replicated map. The 
replication enables one to show the entire dataset in one coherent 
area as indicated by the enclosing black line. Squares, asterisks, 
and crosses mark compounds with high, intermediate, and low 
toxicity, respectively. Points referring to molecules with high 
and low toxicity are grouped closely together and highlighted 
by shaded areas. The compounds with medium toxicity (stars) 
are in the area of transition from high to low toxicity. Note 
that the six compounds of medium toxicity in the domain at 
the right-hand side of the encircled area also are in a transition 
region from low to high toxicity. Only one outlier can be 
detected: a highly toxic compound surrounded by molecules 
with medium toxicity. The proper clustering of the compounds 
in the map gives evidence that the hydrophobicity descriptor 
used is well-suited for modeling the Ah affinity. 
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n = 78 r = 0.89 a = 0.61 

PEC50 (experimental) 

Figure 12. Plot of the experimental pECso values of the polyhaloge­
nated diben/.o-p-dioxins (rhombs), dibenzofurans (crosses), and bi­
phenyls (squares) against the cross-validated pEQso values. 

This result encouraged us to use the autocorrelation vectors 
and the pECso values to train a multilayer neural network by 
the backpropagation algorithm. Figure 12 shows a plot of the 
experimental pEC.so values against the cross-validated values 
(leave-one-out). A good correlation can be observed (r = 0.89, 
o = 0.61) with a high cross-validated r2 of 0.83. For 
comparison. Waller and McKinney obtained with a CoMFA 
model for the same dataset a cross-validated r2 of 0.72.36 

Conclusions 

Autocorrelation allows the representation of molecular surface 
properties by a vector of fixed length, independent of the size 
of a molecule. The approach chosen here takes account of the 
magnitude of a surface property and its change over distance. 
It provides a dramatic reduction in the number of data—in our 
case approximately 3500 single point data were condensed into 
a vector of length 12. Furthermore, this representation of a 
molecular surface is invariant to rotation and translation. Thus, 
no special alignment of a molecule is required. 

Combination of this representation of a molecule with neural 
network methods has a vast potential for the classification and 
modeling of physical, chemical, or biological activity. Unsu­
pervised learning techniques—such as in a Kohonen network-
provide a method for choosing an appropriate surface property 
to enter into the autocorrelation. Supervised learning—such as 
in a feedforward network trained by the backpropagation 
algorithm—can then be used for modeling the activity in 
question. 

This approach was found to be superior to reported results 
on the modeling of the corticosteroid binding globulin (CBG) 
affinity of 31 steroids. In a similar manner the cytosolic Ah 
receptor affinity of 78 polyhalogenated dibenzo-/?-dioxins, 
dibenzofurans, and biphenyls was modeled by the autocorre­
lation of the hydrophobicity potential on the van der Waals 
surface with a higher predictive power than that obtained by 
the most widely used alternative method. 
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